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Rhapsody in Blue 
Richard Miller 

Defence Evaluation and Research Agency, 
St. Andrews Rd., Malvern, Worcs., UK 

he blue phases are, to those liquid crystal T scientists who have not studied them, a 
somewhat obscure and esoteric branch of the 
field. However to those who have had a chance 
to see them in a microscope glowing with an 
iridescent multitude of colours and to study 
them in depth, they represent some of the 
most beautiful and complex of the liquid 
crystal phases. 

As many reviews of the blue phases state, the blue 
phases were actually reported in the very early days of the 
study of liquid crystals. Our old friend Reinitzer [l], as long 
ago as 1888, reported an iridescent effect on cooling past 
the clearing point of a chiral nematic phase. Owing to the 
very narrow temperature range of the behaviour, for many 
years it was seen simply as a transitional effect associated 
with chiral nematic phases. Work on the blue phases really 
began during the flurry of interest in liquid crystals in 
general, following the commercial success of the cyano- 
biphenyls and liquid crystal displays. As more liquid crystal 
phases were added to the pantheon so more blue phases 
were discovered. Theoretical and experimental evidence 
quickly accumulated to back the proposition that these 
blue phases were indeed distinct thermodynamic entities. 
The clinching landmark study came in 1987, where Thoen 
[2], using adiabatic differential scanning calorimetry, man- 
aged to resolve first-order phase transition peaks for the 
blue phases from that of the clearing point transition. 
Finally the blue phases had come into their own as 
genuine thermodynamic phases. 

The naming of these phases as blue is somewhat his- 
toric. In general they are found to strongly reflect circularly 
polarized light, and in the earliest cases this light was 
usually blue. These properties reflect the most important 
feature of the phases, that is their highly twisted, or chiral, 
periodic structure causing Bragg reflection. However, 
unlike their one dimensionally periodic chiral nematic 
phase cousins, the blue phases are periodic in all three 
dimensions. Hence one blue phase crystal structure can 
reflect light from many different lattice planes and at  
many different wavelengths simultaneously. 

One of the greatest challenges of the blue phases was 
to pin down their structure more exactly and to explain 
how a three-dimensional structure could be constructed 
from chiral nematic style helices. Much work was done 
to determine the crystallographic space groups of the 
phases. A key technique in this process was an adaptation 
of a technique first presented by Kossel [3] in 1935 that 
had languished for some time following its initial appli- 
cation. The Kossel technique involves passing divergent 
radiation through a single crystal structure from a point 
source, onto a detector. Some of the radiation fulfils 
the Bragg condition within the crystal and is diffracted 
causing shadows at  the detector, which take the form of 
conic sections. Since each line in the pattern relates to a 
specific reciprocal lattice vector then the complete pattern 
reflects the symmetry of the crystal. Historically the tech- 
nique has been used with both X-rays and electrons to 
elucidate crystal structures, but for the blue phases visible 
light is used. In this way much valuable information about 
the structures of the blue phases was deduced [4]. 

Finally, it was determined that the most common 
periodic blue phases were cubic in nature. These are, in 
the great tradition of liquid crystal phase nomenclature, 
rather unromantically called blue phase one (BPI) and blue 
phase two (BPII). Blue phase one was determined to have 
a body centred cubic lattice, with an 14,32 space group 
symmetry, while blue phase two has a simple cubic 
structure, space group P4,32. Fitting a helical structure 
around these cubic structures is a problem that puzzled 
workers for some time. It is now generally accepted that 
the phase stability depends on a fine balance between an 
array of so-called 'double twist tubes' and coexisting 
defect lines. The 'double twist tube' structures, where 
helices twist  in all directions perpendicular to a central 
axis, are locally energetically favourable compared to the 
one-dimensional twist of a chiral nematic phase but 
topologically impossible to fit into three-dimensional 
space without forming defect lines. Consequently, the 
phases only become stable in materials of high chirality 
and close to the clearing point, where the energy cost 
of defects is lower. Typically these phases are less than 
a degree wide. 

A lot of the early studies using optical Kossel diagrams, 
as the patterns are called, focused on the symmetries 
of the different blue phases. However, other work [5] 
demonstrated that quantifiable measurements on the 
blue phases could be made using this technique. With 
this in mind, Dr Helen Gleeson, of the University of 
Manchester in the UK, and myself, as a graduate student, 
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embarked on a program of research in 1990. This was 
primarily centred around constructing an optical Kossel 
diagram apparatus to take high quality images showing 
unprecedented detail of the diagrams, to push back the 
limits of the optical technique and to investigate its 
possibilities. This collaboration was later to include Dr 
John Lydon of Leeds University. 

Equipment 
Four essential features are required in order to generate 
Kossel diagrams in blue phases; short wavelength 
monochromatic light, highly convergent or divergent 
light, an optical system to image the diagrams and high 
stability temperature control to allow growth of large 
enough blue phase monodomain crystals. In the equip- 
ment we chose to use a 20 mW argon ion laser as the 
light source, an adapted Olympus reflection microscope, 
an oil immersion objective with a high numerical aper- 
ture and a temperature controller built in house with a 
long term stability of c10 mK [6]. We also added a high- 
resolution CCD camera and image digitizing equipment 
to allow a detailed analysis of the Kossel images. 

The intensity of the laser, as an illumination source, 
aided observation while its monochromicity and coher- 
ence aided the resolution and interpretation of the 
images. The laser was coupled to the microscope via 
a fibre optic bundle. The speckle pattern due to the 
coherence of the laser was effectively removed from 
the Kossel images by mechanical vibration of the 
bundle. This fibre bundle also aided coupling of the 
laser to the microscope. Achieving uniform illumination of 
the sample is problematic. The high numerical aperture 
objective of the reflection microscope was considered a 
reasonable compromise. 

Geometry of optical Kossel diagrams 
Most scientists are familiar with the concept of Bragg 
diffraction where incident light is reflected from a periodic 
structure at a specific incident angle, 8, related to the 
wavelength, A, of the incident light and the periodicity, d, 
of the structure by 

k 2 d  sine. 

Bragg's law may also be written in the form 

k, = ko + T, 

where ko and k, are respectively the wavevectors of the 
incident and diffracted waves and T is the reciprocal lattice 

vector. The reciprocal lattice vector points normal to a set 
of planes with magnitude equal to 2 d d .  

Clearly only those layers with I~ lc2lk~l  can cause 
diffraction and the possible directions for the diffraction 
form a cone with the axis along T. For a general crystal, 
with many reciprocal lattice vectors, illumination from 
all angles generates many cones of diffracted light 
emanating from the crystal. Light diffracted in any specific 
direction is parallel and may be focused to a point in the 
back focal plane of an optical system. Hence, the cones of 
light form a pattern in this back focal plane, which is 
called a Kossel diagram. The back focal plane may be 
made to coincide with a screen or camera. Then, provided 
that the focal length of the optical system is large 
compared to the Kossel diagram image size, the radial 
distance of a point on the Kossel diagram is proportional 
to the sine of the angle of light diffracted from the crystal. 
Hence, the diagram takes the appearance of the inter- 
section lines between the cones and the sphere projected 
down onto a flat plane (figure 1). The edge of the Kossel 
diagram image is determined by the numerical aperture of 
the optical system and may be easily related to an angle 
within the crystal by Snell's law. 

The Bragg condition is only exact for crystal samples of 
infinite thickness, whereas in the real world typical blue 
phase samples may only contain ten to twenty layers. 
Hence, the lines in the Kossel diagram have a finite width 
and the light changes phase across this width. 

Viewing t direction 
Kossel diagram in 
vie/wing plane 

I 
Figure 1 .  Geometrical technique used to construct Kossel diagrams. 
Each reciprocal lattice point within the sphere generates a Kossel line. 
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( 1  10) , (200) 

figure 2. 
and their theoretical equivalents. 

Two sample Kossel diagrams generated by blue phase one 

figure 3. 
and their theoretical equivalents. 

Two sample Kossel diagrams generated by blue phase one 

Kossel diagram examples in the 
blue phases 
The following figures show actual Kossel diagram 
images beside theoretical representations illustrating the 
Miller indices associated with each line. The blue phases 
were formed in a mixture of 20% w/w of CE2 in 4CB [7]. 
Figure 2 shows Kossel diagram images of blue phase, 

one viewed along the [Ol 11 crystal axis (figure 2(a)) and 
the [112] crystal axis (figure 2(b)). Figure 2(a), in par- 
ticular, clearly shows the two-fold rotation symmetry of 
the blue phase one space group (14,32). Figure 3 shows 
Kossel diagram images from the same mixture heated 
up into blue phase two, P4232 space group. These show 
views along the [Oll] crystal axis (figure 3(a)), where 
there is two-fold rotation symmetry, and the [l  1 11 crystal 
axis (figure 3(b)), where the rotation symmetry is three- 
fold. These images clearly show patchy illumination of the 
Kossel lines, caused by uneven sample illumination, and 
faint evidence of multiple images, due to neighbouring 
crystal domains. The dotted lines in the line drawings 
show the edge of the Kossel diagram images dictated by 
the numerical aperture of the microscope objective. 

In our first study of the blue phase Kossel diagrams 
[8] we simply carried out lattice parameter measure- 
ments. To our surprise we found that the diagram 
illustrated in figure 2(a) showed a crystal compression 
of about 5*1% along the viewing axis. This is not 
obvious from the diagram. This compression is slight 
and so extra care was taken to check possible sources 
of error. Imaging a diffraction grating checked for 
example the approximation of the Kossel diagram 
geometry, illustrated in figure 1 .  This gave twelve dif- 
fraction orders in the Kossel images and allowed 
calibration of the image. Further more this gave the total 
numerical aperture of the system as 1.23*0.01. 

Order parameters 
The order parameter in the blue phases is more 
complex than in a nematic. There is some flexibility 
in the choice of an order parameter in any system. For 
the sake of convenience, in blue phases the anisotropic 
part of dielectric properties are chosen. This is similar in 
principle to the dielectric anisotropy but in blue phases 
it is described by a spatially periodic tensor. Hence, 
the tensor may be easily broken up into its Fourier 
components. Each of which relates exactly to a reciprocal 
lattice vector. 

The application of the Landau theory [9] of phase 
transitions using this order parameter has been highly 
successful in predicting the existence of the blue phases. 
In particular this theory was developed by Brazovskii and 
co-workers [lo] and Hornreich and Shtrikman [l  11 (see 
also reviews [ 121). In work by Belyakov eta/ .  [ 13) the order 
parameter in the blue phases was determined, to within a 
common scaling factor, from the blue phase transmission 
spectra. This momentous work also showed that the 
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figure 4. Normalized blue phase scalar order parameter in blue phase two. 

complexity of the blue phase order parameter could be 
reduced. This is possible since the relative magnitudes of 
the Fourier components, numerically calculated by Landau 
theory, were shown to be approximately constant with 
temperature. Hence, a simple scalar order parameter 
may be factored out and was found to follow an equation 
of the form 

Es = a[l + JiEqqixi] 

It can then be shown [ 141 using kinematic light scattering 
theory that the diffracted peak intensity of a Kossel line is 
proportional to the square of this scalar order parameter 
multiplied by a purely geometrical factor. 

Using the blue phase two Kossel diagrams, which give 
a cleaner image, a whole series of diffracted intensity 
data points were taken at a range of temperatures 
across the phase. The order parameter equation was then 
fitted to this data and scaled to unity at zero Kelvin (figure 
4). This shows an order parameter dropping rapidly 
by 25% over 0.5 K. The absolute values of 0.08 drop- 
ping to 0.06 are not unreasonable. However, direct com- 
parisons with the order parameter in nematic phases are 
not strictly possible. 

Many wave scattering 
One area in which Kossel diagrams are uniquely suited 
is their application to the phase problem of crystal 
structures. This suitability is simple due to the use of highly 
convergent light and the consequent frequent occurrence 
of many wave scattering conditions. 

In the standard Bragg diffraction geometry a single 
parallel beam of light impinges on a periodic crystal, 
and only one beam is diffracted out of the incident 
beam path. This is one-wave scattering. More complex 
behaviour is possible in this experiment when the Bragg 
condition is met simultaneously for more than one set of 
planes in the sample. In this case more than one diffracted 
spot appears at the detector. This condition is where 
many-wave diffraction occurs. 

Key information about the crystal is potentially avail- 
able when many-wave diffraction conditions occur. This 
information relates directly to the relative positions of 
the diffracting layers within the unit cell of the crystal. 
However, this information is held in the relative phases 
of the diffracted light beams and such information is 
typically lost at the detector. Hence, classical X-ray dif- 
fraction can only reveal the orientation and periodicity 
of a set of crystal planes but not i ts exact position. This 
is the classic phase problem of X-ray crystallography, 
which is only recently becoming solvable with the advent 
of free electron lasers. 

In Kossel diagrams, where a coherent light source is 
used, this problem is easily solved. Generally the intensity 
of light at  one position on a Kossel line in a diagram is 
simply due to one wave scattering. However, where two 
or more Kossel lines cross many wave scattering comes 
into play. This is because the light is diffracted from two 
possible incident directions and the resulting diffracted 
light is combined into one output. Clearly, if coherent 
incident light is used, all the possible interference effects 
come into play and the light pattern in the region of the 
Kossel line crossing point reveals the relative phases of 
the diffraction. Hence, patterns at the Kossel line crossing 
points potentially reveal the final piece of the puzzle of 
the positions of the lattice planes in the crystal. 

Unexpected features 
When we started our experiments we were aware of 
work by Belyakov and Dmitrienko [15] that relates to the 
many-wave light scattering in blue phases. In principle one 
simply has to solve Maxwell's wave equation. However, in 
the true many-wave condition analytical solutions are 
not possible. Belyakov and Dmitrienko approached 
the problem via a perturbation theory and showed 
that strange things do indeed happen at  Kossel line 
crossing points. 

We were surprised and delighted by the complexity 
of behaviour in regions where Kossel lines were close in 
the diagrams, but this was not all. Also we observed 
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Figure 5. Example Kossel diagram images showing interference fringes 

interference fringes far from the isolated Kossel rings 
with which they were associated. To our knowledge 
neither of these effects had ever been observed before. 
Examples of these images are shown in figure 5. 

A simplistic numerical model, based on summation 
of phasor contributions, was considered to try and 
reproduce the essential features Of the Observed many- Figure 6. 

helix. The 'left-hand' sDiral structure can be clearlv seen. 
Kossel diagram of a well aligned right handed chiral nematic 

wave effects [16]. The simplistic model successfully 
reproduced all of the essential interference features at 
the crossing point of the (110) and (101) lines in BPI 
and the passing point of the (100) and (010) lines in 
BPII. The modelled results for the crossing of the (1 10) 
and (101) lines in BPI even suggested relative phase 
of about 3d2  between the Fourier components. The 
estimated phase difference apparently contradicted the 
generally accepted structure of blue phase one. How- 
ever, this may have been an artefact of the simplistic 
model and really one would need to treat the optics 
properly to be certain. 

Helical phases 
Further surprises were in store when we used the Kossel 
technique to examine the properties of a twist grain 
boundary A phase in the material 14PlM7 [17]. This 
displayed a single broad annulus in the Kossel diagram, as 
would be expected, but also showed spiral structure 
within this annulus [181. This led us to consider the 
better understood system of chiral nematic phases [19]. 
A thermochromic sample, TM533 [7], was prepared and 
a detailed study of the refractive index and pitch behav- 
iour of this mixture was made using standard techniques. 
Finally a series of Kossel diagram images were taken on 
planar well-aligned samples of the chiral nematic helix. 
These images also showed the same spiral structure 

(figure 6). Hence, empirically demonstrating that the 
optics of the TGBA phase are the same as the chiral 
nematic phase. 

By reducing the pitch of the sample the annulus first 
appears as a bright circle. This circle expands and then 
breaks into an annulus. At this point there is no sign of 
any spirals. As the annulus is made to expand the spiral 
pattern appears within a narrow line at  the centre of the 
bright band. Then as the annulus expands further the 
spiral starts to dominate the image. 

Experimentally, these four spirals are found to bodily 
rotate with the polarizers, opposite arms being rotated by 
each polarizer. Also the handedness of the Kossel spiral is 
found to reflect the handedness of the chiral nematic helix 
with the 'left hand' spiral of figure 6 being caused by a 
right handed chiral nematic helix. 

At first glance this appears to be a simple system. 
Several theoretical studies of oblique reflection from 
helical phases have been made, particularly Dreher 
and Meier [20], Sugita et a/. [21], Takezoe et a/. [22], 
Miraldi et a/. [23] and Oldano et  a/. [24]. In virtually 
all cases the fit between numerical calculations and 
experimental results is near perfect. However, the lack 
of a true analytical solution makes understanding the 
spiral features complex. 
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Figure 7. 
on a helix at  oblique angles. 

Schematic diagrams of the optical behaviour of light incident 

1.5 

I .o 

0.5 

0 

n21 p' 

Figure 8. 
aligned helix. Lines are fitted to the points representing the annulus 
edge and are found to fit Bragg's law. Inner points represent edges of 
total reflection band (figure 7(c)). 

Positions of features on the Kossel diagrams of a well 

Light hitting the sample, as in all birefringent crystals, 
splits into two components with conjugate polarization 
states. The polarization states vary from left and right 
circular polarization states at near normal incidence to 
linear s and p states at 90" to this. In general the 
polarizations are elliptical (figure 7). When the Bragg 
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Figure 9. 
the pretransitional pitch divergence. 

Pitch in TGBA phase measured from Kossel diagrams. Note 

condition is met then one or both of these polarized 
components may be reflected. Further, at very high 
incidence angles these two polarization states become 
coupled (figure 7(d)). We proposed that the major 
axis of the elliptically polarized light reflected from the 
sample rotates 90" from one side of the annulus to the 
other. This behaviour is not clear from theoretical studies, 
which have never considered Kossel diagrams, but this 
rotation is consistent with the spiral images. 

Selective reflection and Bragg's law 
Bragg's law may be rewritten as 

rn2=n2-A2/p2 

where rn is the radial position on the Kossel diagram, n 
is the refractive index of the medium, A the wavelength 
and p the helical pitch. Taking data from the various 
annuli edges and plotting m2 against A21p2 gives the graph 
in figure 8. 

Clearly it can be seen that the edges of the annulus 
follow Bragg's law very well (figure 8). The gradients for 
the linear fits to the outer and inner edges are both found 
to be within about 2% of unity while the intercepts cor- 
respond exactly with the parallel and perpendicular com- 
ponents of the refrac-tive index. Having confirmed the 
validity of the Bragg equation measured from the edge of 
the annuli it was possible to derive pitch measurements 
from the Kossel diagrams of the TGBA phase. The final 
results gave the pitch variation within a 4 K wide phase 
to an extremely high accuracy and clearly illustrated pre- 
transitional pitch divergence within the phase (figure 9). 
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Summary 
As can be seen above the Kossel diagram technique not 
only reveals the beautiful symmetry of periodic phases but 
deeper examination reveals a wealth of information about 
the phase structure. In the blue phases we can ascertain 
the orientation, periodicity and phase of all the Fourier 
components of the structure and the order parameter, i.e. 
almost a complete description of the phase. In the helical 
phases we can determine the pitch and handedness 
without even using circularly polarized light. Clearly a lot 
of this information is available via other techniques but 
rarely is so much available from the one relatively simple 
technique. For much of the work presented here it was 
not possible to do much more than a cursory study to 
test the potential of the technique. With more time and 
resources it would have been informative and fun to 
carry out a full study of all the blue phases and to model 
the results more accurately to determine completely the 
Fourier components. However, as is so often true in life, 
we were fortunate to have had the time to study such an 
esoteric area that we did. 
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